Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We introduce a concept for efficient optical parametric amplification (OPA) based on simultaneously phase-matched idler second harmonic generation (SHG), which together exhibits the dynamical behavior of parametric amplification but with damped conversion-back-conversion cycles. This enables amplification efficiency exceeding that of conventional OPA by several-fold for femtosecond and picosecond signal pulses with bell-shaped intensity profiles by allowing a near-uniform spatiotemporal depletion of the pump wave. We develop a Duffing oscillator model that unifies the description of conventional OPA and amplification accompanied by idler photon displacement by either linear absorption or SHG. A spatiotemporal analysis of devices based on birefringent or superlattice quasi-phase matching in common bulk media predicts energy conversion up to 55%.more » « less
-
We demonstrate dramatic parametric amplifier conversion efficiency enhancement simply by arranging for simultaneously phase-matched idler second-harmonic generation, with 44% pump-to-signal energy conversion (68% pump depletion) in a 48-dB-gain bulk-crystal mid-IR amplifier stage with Gaussian beams.more » « less
-
Boyd, R.; Conti, C.; Christodoulides, D.; Rakich, P. (Ed.)
-
Schunemann, Peter G.; Schepler, Kenneth L. (Ed.)
-
null (Ed.)We illustrate that a Hermitian nonlinear optical system consisting of hybridized parametric amplification and second harmonic generation mimics non-Hermitian evolution dynamics. Oscillation damping, evolution to a static steady state, and exceptional points arise from the use of second harmonic generation as an irreversible loss mechanism. The investigated system can be used to solve problems of inefficiency in parametric amplifier systems used widely in laser science and industrial applications. More generally, these findings suggest a new paradigm for the engineering of system dynamics where energy recovery and system sustainability are of importance.more » « less
-
For as widely used a tool as nonlinear optical frequency conversion is for both science and industry, it remains widely limited in eciency and bandwidth (and ultimately also in cost) due to the fundamental problem of backconversion in the nonlinear evolution dynamics. This review paper covers new developments and capabilities in frequency conversion devices, including optical up- and down-converters and ampli ers, based on nonlinear evolution dynamics in which back-conversion is suppressed. One such approach is adiabatic frequency conversion, in which the dynamics of rapid adiabatic passage replace the regular cyclic conversion evolution in phase-matched sum- and dierence-frequency generation. This approach has enabled devices far surpassing the conventional eciency-bandwidth trade-o. For example, in chirped quasi-phase matched quadratic crystals, microjouleenergy single-cycle mid-infrared pulses were generated with arbitrary pulse shaping capability, presenting a source with unique features for nonlinear spectroscopy and strong- eld physics applications. We review new developments in the use of optical bers as a cubic nonlinear platform for the same concept, utilizing a tapered core diameter or a pressure gradient to allow up- and down-conversion with ultra-wide bandwidth and high eciency. We also review a newly introduced concept for high eciency optical parametric ampli cation, via a novel approach for suppressing back-conversion in optical parametric ampli cation by simultaneously phasematching the idler wave for second harmonic generation. Keywords: Adiabatic wave mixing, ecient optical parametric ampli cation, octave-spanningmore » « less
An official website of the United States government

Full Text Available